INTRA - AORTIC BALLOON PUMP

DESCRIPTION
The Balloon Pressure Waveform (BPW) represents helium movement between the console and the IAB catheter. It is shown as a calibrated, continuous waveform allowing objective assessment of the safety and effectiveness of counterpulsation.

BPW HEIGHT
Reflects the pressure in the aorta, therefore the plateau pressure on the BPW should be within 25 mmHg (+/-) of the AUG.

BPW WIDTH
Is approximately the duration in which the balloon is inflated.

DIA
Unassisted End Diastolic Pressure

SYS
Unassisted Peak Systolic Pressure

AUG
Diastolic Augmentation/Peak Diastolic Pressure

ADIA
Assisted End Diastolic Pressure

ASYS
Assisted Peak Systolic Pressure (Systole after IAB deflation)

DN
Dicrotic Notch

TIMING GUIDELINES

INFLATION
Goal: To produce a rapid rise in aortic pressure (optimize AUG), thereby increasing O2 supply to coronary circulation.

1. Inflated just prior to DN which should result in AUG > SYS

2. ADIA ≤ DIA

3. ASYS < SYS

DEFLATION
Goal: To reduce aortic end diastolic pressure (afterload), thereby decreasing MVO2 while improving the CO (cardiac output).

AUTOPILOT™ MODE

AUTOPILOT MODE
In AutoPilot mode, the console selects the ECG and AP source, trigger mode, timing method and optimizes timing.

1. Console scans all available ECG leads continuously. If the current lead selected is lost or noisy, the console will select the best available lead. If the clinician prefers, the ECG lead, source and gain can be manually selected.

2. AP source is selected by the console but can be changed by the clinician. If the Fiber Optic sensor is connected, it will always be selected.

3. Console continuously monitors the patient condition and selects the trigger mode best suited for the clinical situation. Selects between different ECG trigger modes, AP or Pacer trigger modes.

4. All timing settings are under control of the console and are continuously assessed and adjusted as required. Deflation can be managed by the pump or selected by the user when an arrhythmia is detected.

OPERATOR MODE
The clinician makes all choices regarding ECG source, AP source, trigger, and timing.

1. Once the timing has been set, the console will automatically adjust for changes in heart rate.

BALLOON PRESSURE WAVEFORM

24-Hour Intra-Aortic Balloon Product Hotline: **800-447-IABP** Worldwide: 617-389-8628
TROUBLESHOOTING

COMMON TIMING ERRORS

EARLY INFLATION
- IAB is inflated well before actual DN.
- (aortic valve closure.)
- Violates Rule 1 for inflation.
- Result: • Premature closure of aortic valve
 • Reduces stroke volume/CO
 • Increase in LVED volume
 • Increase in LV wall tension

EARLY DEFLEXION
- ASYS = SYS
- Violates Rule 3 for deflation.
- May see “U” shape at ADIA.
- Result: • No afterload reduction

LATE INFLATION
- DN is visible between points SYS/AUG.
- Violates Rule 1 for inflation
- Result: • AUG less than optimum
 • Decreased perfusion pressure and volume to coronary arteries

LATE DEFLEXION
- ADIA > DIA
- Violates Rule 2 for deflation.
- Result: • Increased workload of left ventricle
 • Increased MVO₂

POOR ECG LEADS FOR TRIGGERING
This lead has the potential to cause “double triggering” or “wandering timing” (if the R wave is not consistently identified as the trigger event).

GOOD ECG LEADS FOR TRIGGERING
Whenever possible, it is preferable to trigger on the R wave of the ECG signal. In addition to providing the console with a clean, artifact-free ECG tracing, always select the lead with the most unidirectional R wave (either positive or negative) and with the smallest P and T waves.

ECG Pattern
The preset trigger mode. The computer analyzes the height, width, and slope of a positively or negatively deflected QRS complex. The width of the R wave must be between 25-125 msec.

ECG Peak
The computer analyzes the height and slope of a positively or negatively deflected QRS complex. The trigger mode of choice for wide complex rhythms. Preferred trigger for HR <135.

A Fib
The computer analyzes the QRS complex in the same manner as in the peak mode. The balloon will automatically be deflated whenever an R wave is sensed. The trigger mode of choice for rhythms with varying R to R intervals.

Biphasic QRS could cause gaining issues and missed triggers or wandering triggering (therefore wandering timing).

Arterial Pressure
The computer uses the systolic upstroke of an arterial pressure waveform as the trigger signal. An option for clinical situations where an ECG is unavailable or distorted

A Pace
The computer uses the atrial pacing spike as the trigger signal. This mode can only be used with 100% atrial paced rhythms.

V Pace
The computer uses the ventricular spike as the trigger signal. Used with ventricular or AV paced rhythms. It is ESSENTIAL that the patient’s rhythm is 100% paced.

Internal
The balloon inflates and deflates at a preset rate regardless of the patient’s cardiac activity. Used in situations where there is no cardiac output and no ECG. Must be confirmed by an additional keystroke.

During Cardiac Resuscitation
If counterpulsation is to be continued and synchronized to the CPR effort, then Arterial Pressure should be selected. In the event that the CPR cannot generate a consistent and reliable trigger, Internal may be utilized.

POOR AUGMENTATION
Check for: • Proximal portion of IAB in sheath
 • Suture too tight around catheter
 • Partial obstruction
 • “Slow catheter” or HE shuttle speed
 • Very tortuous vessels

Wide deflation artifact may cause a potential helium loss alarm in 1:1 assist.

POOR AUGMENTATION
Check for: • Kink in catheter or tubing
 • Balloon too large for aorta
 • Balloon position too high or too low

SQUARED OR BOUNDED PLATEAU PRESSURE
Check for: • Volume setting too low
 • Balloon too small for patient
 • Low systemic vascular resistance

REDUCED AUGMENTATION
Check for: • Low helium
 • Low systolic upstroke

HIGH BASILINE
Check for: • Partially wrapped balloon
 • IAB in sheath
 • IAB too low in aorta
 • IAB too large
 • Overfill

POSSIBLE HELIUM LOSS
Check for: • Possible leak in connections
 • tubing
 • Ekdex catheter

HIGH PRESSURE
Check for: • Kink in catheter or tubing
 • Balloon too large for aorta
 • Balloon position too high or too low

GooD ecg leaDs FOR TRIGGERING